II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2022

BASIC THERMODYNAMICS (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
UNIT-I							
1	a)	Explain Zeroth law of thermodynamics. What is its	L2	CO1	5 M		
		importance?					
	b)	A gas undergoes a thermodynamic cycle consisting of	L3	CO1	9 M		
		the following processes:					
		I) Process1–2: Constant pressure P_1 =1.4bar,					
		$V_1 = 0.028 \text{ m}^3$, $W_{12} = 10.5 \text{kJ}$					
		II) $Process2-3$: Compression with $PV = constant$,					
		$U_3 = U_2$					
		III) Process3–1: Constant volume, $U_1-U_3 = -26.4$ kJ.					
		Assume there are no significant changes in Kinetic					
		energy (KE) and Potential Energy (PE). Determine					
		the following:					
		i) Calculate the network for the cycle in kJ,					
		ii)Calculate the heat transfer for process 1–2,					
		iii) Show that cycle having $\sum Q = \sum W$.					
	OR						
2	a)	Obtain an expression for work and heat transfer for a	L2	CO1	5 M		
		Polytropic process and analyze the relationship					
		between them.					
	b)	12.60 liters of a gas at 20°C and 1.03 bar is	L3	CO1	9 M		
		compressed adiabatically to 9.8 bar. It is then cooled					
		at constant volume to pressure P_3 and further					
		expanded isothermally so as to reach the initial					
		condition. Find					

		the sector of an example					
		i. the value of pressure P_3					
		ii. the work done and					
		iii. the change in internal energy in constant volume					
		process.					
		Assume $C_p=14.28$ kJ/kg K and $C_v=10.13$ kJ/kg K.					
	UNIT-II						
3	a)	Establish and analyze the equivalence of Kelvin-	L3	CO2	5 M		
		Planck and Clausius statements.					
	b)	A nozzle is a device for increasing the velocity of a	L3	CO2	9 M		
		steadily flowing of fluid. At the inlet to a certain					
		nozzle the enthalpy of the fluid is 3025 kJ/kg and the					
		velocity is 60 m/s. At the exit from the nozzle the					
		enthalpy is 2790 kJ/kg. the nozzle is horizontal and					
		there is negligible heat loss from it. Determine the					
		following:					
		i) The velocity at the nozzle exit,					
		ii) If the inlet area is 0.1 m^2 and specific volume at					
		inlet is 0.19 m^3/kg , find the rate of flow of fluid, and					
		iii) If the specific volume at the nozzle exit is 0.5					
		m^{3}/kg , find the exit area of the nozzle.					
		OR					
4	a)	What is an irreversible process? Discuss the types of	L2	CO2	5 M		
		irreversibility and also mention the causes of					
		irreversibility of a process.					
	b)	A gas flows steadily through a rotary compressor. The	L3	CO2	9 M		
		gas enters the compressor at a temperature of 16°C, a					
		pressure of 100 kPa, and an enthalpy of 391.2 kJ/kg.					
		The gas leaves the compressor at a temperature of					
		245°C, a pressure of 0.6 MPa, and an enthalpy of					
		534.5 kJ/kg. There is no heat transfer to or from the					
		gas as it flows through the compressor.					
		i) Evaluate the external work done per unit mass of					
		gas assuming the gas velocities at entry and exit to be					
		negligible.					
		ii) Evaluate the external work done per unit mass of					
		gas when the gas velocity at entry is 80 m/s and that					
		at exit is 160 m/s.					
		iii) Analyze above two results of rotary compressor					
		with your comment.					
L							

		UNIT-III			
5	a)	Show that entropy is the property of a system.	L2	CO3	5 M
	b)	A reversible heat engine operates between two	L3	CO3	9 M
		reservoirs at a temperature of 600°C and 40°C. The			
		engine drives a reversible refrigerator which operates			
		between 40°C and -20°C. The heat transfer to the heat			
		engine is 2000kJ and the network output of the			
		combined engine refrigerator plant is 360 kJ. Evaluate			
		the following:			
		i) Sketch the neat diagram of combined engine			
		refrigerator plant with the given data,			
		ii) The heat transfer to the refrigerator, and			
		iii) The net heat transfer to the reservoir at 40°C			
6		OR Define best engine best summ and refrigerenter and	10	CO^2	5 M
6	a)	Define heat engine, heat pump and refrigerator and	L2	COS	5 M
		establish relationship between C.O.P of heat pump			
	b)	and refrigerator. Calculate the entropy change of the universe as a	L3	CO3	9 M
	0)	result of the following processes:	LJ	COS	9 IVI
		i) A copper block of 600 g mass and with C_p of 150			
		J/K at 100°C is placed in a lake at 8°C.			
		ii) The same block, at 8°C, is dropped from a height			
		of 100 m into the lake.			
		iii) Two such blocks, at 100 and 0°C, are joined			
		together.			
		UNIT-IV			
7	a)	With neat schematic diagram, develop an expression	L4	CO4	4 M
		for maximum work done by a closed system with			
		flowing into the system $(T_0 > T)$.			
	b)	Air flows through an adiabatic compressor at 2 kg/s.	L3	CO4	10 M
		The inlet conditions are 1 bar and 310 K and the exit			
		conditions are 7 bar and 560 K. Compute the net rate			
		of availability transfer and the irreversibility.			
		Take $T_0 = 298K$.			
OR					
8	a)	A house husband is cooking mutton for his family in a	L4	CO4	4 M
		pan that is: i) uncovered, ii) covered with a light lid,			
		iii) covered with a heavy lid. For which case will the			
		cooking time be the shortest? Why?			

		-				
	b)	2kg of steam at a pressure of 20bar exists in the following cases:	L3	CO4	10 M	
		i) wet steam with a dryness fraction of 0.9				
		ii) superheated to 250° C.				
		Determine enthalpy, volume, entropy and internal				
		energy.				
		(Note: Take C _p =2.302kJ/kgK for super-heated steam)				
UNIT-V						
9	a)	Discuss and draw the neat diagrams for the following cycle:	L2	CO5	6 M	
		i) Atkinson cycle; ii) Brayton cycle, and				
		iii) Lenoir cycle.				
	b)	An engine working an Otto cycle is supplied with an	L3	CO5	8 M	
	0)		LJ	COS	0 111	
		air at 0.1 MPa, 35°C. the compression ratio 8. Heat				
		supplied is 2100 kJ/kg. Calculate the following:				
		i) The maximum pressure of the cycle,				
		ii) The maximum temperature of the cycle,				
		iii) The cycle efficiency, and				
		iv) The mean effective pressure.				
		(Note: for air, $C_p = 1.005 \text{ kJ/kg K}$, $C_v = 0.718 \text{ kJ/kg K}$				
		and $R = 0.287 \text{ kJ/kg K}$)				
		OR				
10	a)	Compare the Otto cycle, diesel cycle and dual	L2	CO5	6 M	
		combustion cycle for the following cases:				
		(i) same compression ratio,				
		(ii) maximum pressure and temperature.				
	b)	In an air standard Diesel engine cycle, the	L3	CO5	8 M	
	-)	compression ratio is 16, and at the beginning of			•	
		isentropic compression, the temperature is 15°C and				
		the pressure is 0.1 MPa. Heat is added until the				
		temperature at the end of the constant pressure				
		process is 1480°C. Calculate the following:				
		i) The cut-off ratio,				
		ii) The heat supplied per kg of air,				
		iii) The cycle efficiency, and				
		iv) The mean effective pressure.				